| Reg. No.: |
|-----------|
|-----------|

# Question Paper Code: 21446

## B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

#### Third Semester

Electronics and Communication Engineering

### EC 2205/EC 36/080290011 — ELECTRONIC CIRCUITS — I

(Common to Medical Electronics Engineering)

(Regulations 2008)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. What is biasing?
- 2. Define stability factor.
- 3. Draw the *h* parameter model of CE transistor at low frequencies.
- 4. Define CMRR.
- 5. List the distortions present in the power amplifier.
- 6. Give the applications of class-C amplifier.
- 7. A half wave signal with a peak of 20V is the input to a choke input filter. If  $X_L = 5k\Omega$  and  $X_C = 25$  ohms, what is the approximate peak to peak across the capacitor?
- 8. A power has no-load voltage of 12V. What will be its full load voltage if its voltage regulation is
  - (a) 10%
  - (b) 50%
- 9. Two stage of a multistage amplifier have a gain of 50 and 20. And what is the effective voltage gain in dB?
- 10. Draw the frequency response of a RC coupled amplifier.

# PART B — $(5 \times 16 = 80 \text{ marks})$

| 11. | (a) | (i)  | List the three sources of instability of collector and how does the designer minimize the percentage variation in IC due to the above sources? (6)           |  |  |
|-----|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     |     | (ii) | Draw a self-bias circuit and explain qualitatively why such a circuit is an improvement on the fixed-bias circuit as far as stability is concerned. (10)     |  |  |
|     |     |      | Or                                                                                                                                                           |  |  |
|     | (b) | (i)  | What is the condition for thermal stability? Explain (8)                                                                                                     |  |  |
|     |     | (ii) | In a self-bias circuit find Rc, R1, R2 for the following specifications                                                                                      |  |  |
|     |     |      | $R_C = 4 k\Omega \ VCC = 20 V I_C = 2mA \text{ and } \beta = 50.$ (8)                                                                                        |  |  |
| 12. | (a) | (i)  | Write the Ebers and Moll equations and explain. (6)                                                                                                          |  |  |
|     |     | (ii) | Draw a family of CS drain characteristics of an $n$ channel JFET and explain how does the FET behave for small values of $ VDS $ and                         |  |  |
|     |     |      | large $ VDS $ ? (10)                                                                                                                                         |  |  |
|     |     |      | Or                                                                                                                                                           |  |  |
|     | (b) | (i)  | Define the following regions in a transistor                                                                                                                 |  |  |
|     |     |      | (1) active                                                                                                                                                   |  |  |
|     |     |      | (2) saturation and                                                                                                                                           |  |  |
|     |     | 1    | (3) cutoff. (6)                                                                                                                                              |  |  |
|     |     | (ii) | Draw the static input and output characteristics of a CE transistor and explain the salient features of the characteristics. (10)                            |  |  |
| 13. | (a) | (i)  | Draw the high frequency Pi model of an amplifier and describe how<br>the internal behavior of the transistor affects its high frequency<br>performance. (10) |  |  |
|     |     | (ii) | With a neat circuit diagram describe the operation of RC coupled amplifier. What are the advantages and disadvantages of it? (6)                             |  |  |
|     | ٠.  |      | Or                                                                                                                                                           |  |  |
|     | (b) | (i)  | Derive expressions for voltage gain, input impedance and output impedance of a RC coupled amplifier. (10)                                                    |  |  |
|     |     | (ii) | Derive the expressions of upper and lower cut off frequencies of multistage amplifiers. (6)                                                                  |  |  |

21446

| 14. | (a) | (i)   | Describe the classification power amplifier. (6)                                                                                |
|-----|-----|-------|---------------------------------------------------------------------------------------------------------------------------------|
|     |     | (ii)  | Discuss the complementary symmetry class C amplifier and derive its efficiency. (10)                                            |
|     |     |       | $\mathbf{Or}$                                                                                                                   |
|     | (b) |       | a neat diagram explain the class B Push pull amplifier. Derive the ession for its efficiency. (16)                              |
| 15. | (a) | (i)   | With a neat diagram describe the operation of full wave bridge rectifier. (4)                                                   |
|     |     | (ii)  | Derive the expression for ripple factor, efficiency and TUF of a bridge rectifier. (4)                                          |
|     |     | (iii) | Derive the expressions for ripple factor and DC output voltage for a capacitor filler at the output of full wave rectifier. (8) |
|     |     |       | Or                                                                                                                              |
|     | (b) | (i)   | Derive the operation of a transistor series voltage regulator. (10)                                                             |
|     |     | (ii)  | With a block diagram describe a switching mode power supply. (6)                                                                |